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Chapter 6. – Analysis Menu: the Factorial Analyses 

 

6.1 – Geometric representation 

Let us consider a data table X(n,p), in which the rows represent a set  I  of n units and the columns 

the values of p variables measured on those units. X is a descriptive table, and for sake of simplicity 

we will suppose that the variables are quantitative; however, the definitions and the concepts that 

will be given can be extended to any kind of table. 

The behaviour of each row-unit (again, think of a district as an example) is represented by an array 

of p ordered real numbers (the values taken by the p variables in the unit). The p components of 

such an array can be thought as the co-ordinates of a point in a vectorial (geometrical) space R
p

 with 

p dimensions; the unit can be identified with that point.  

The set  I  of n units can be represented as a cloud of n massive points (remember that there is a 

weight attached to each unit). Every other point in R
p
 can be thought of as a virtual unit (i.e., a 

combination of values of the p descriptive variables) that might possibly be encountered in another 

case, or another sample, or that can have a particular meaning for the given cloud, like its central 

point. 

The Figure 6.1 gives an example in a simple case with two variables. 

 

Figure 6.1 - Geometrical representation of a set of units described by two variables. G is the cloud's 

centre of gravity. 

In the figure each of the two orthogonal axes carries the values of a variable; each geometrical point 

identifies unequivocally an array of two values (i.e., a unit) and vice versa. If the variables were 

three, three orthogonal axes would be necessary to represent them and they could still be visualised 

easily. When the variables are more than three, our three-dimensional mind cannot visualise the 

picture; however, all the mathematics that can be conceived for handling the two- or three-
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dimensional case can be extended with no effort to the p-dimensional case. We shall therefore 

consider the general case of a cloud of n object-points in R
p
, but you can focus intuitively on the 

representation with two dimensions without any loss of generality.  

In a similar way, we can look at the table X by columns. Each column is an array of n numbers that 

represent the values assumed by a variable over the n units. It can be identified with a geometrical 

point in an n-dimensional space R
n
. In this case, we have a cloud of p variable-points in R

n
. 

The table admits therefore two geometrical representations, respectively as a cloud of n unit-points 

in R
p
 or of p variable-points in R

n
. As for their information contents, they are both perfectly 

equivalent to the numeric description given by the table X. It seems natural to focus on the cloud of 

n unit-points in R
p
 for analysing the differences existing amongst the statistical units with respect to 

the descriptive variables, but also the other representation could be used, and actually is, when there 

is a good computational reason. 

The two spaces Rp and Rn are dual. It is generally convenient to study in Rp the relationships among 

the units (e.g., two units globally similar with respect to the p variables are represented by points in 

Rp close to one another, etc.) and focus on the cloud in Rn to study the relationships amongst the 

variables (two uncorrelated variables are represented by points that lie in orthogonal directions with 

respect to the origin, while two highly correlated variables lie in directions that form a small angle, 

etc.). 

6.1.1 – The distance 

We will assume as a global indicator of the dissimilarity between two statistical units the distance 

between the two points that represent them in Rp: all variables contribute to its determination. In the 

case of a quantitative descriptive table the global dissimilarity between units i and k is computed as  

d
2
(i,k) = (x

i1
-x

k1
)

2
 + ... + (x

ip
-x

kp
)

2
 

using the Euclidean distance between point i and k in Rp (we will adopt a different metrics - i.e., a 

different definition of distance - in the case of a contingency table). 

As the contributions to the distance coming from different variables are to be added up, they must 

be expressed in the same unit of measure, or be a-dimensional. It is also convenient to balance the 

contributions of different variables to the distance, so as to avoid the dominance of one or of a few 

of them, caused only by the unit of measure adopted. A way to obtain this is to standardise all the 

variables before analysing: this is performed automatically by the program. Once normalised (i.e., 

centred by subtracting from each value the variable's average, and reduced by dividing the values 

so obtained by the variable's standard deviation) The average of all variables is zero, and their 

variance is equal to 1. 

6.1.2 – The centre of gravity of the cloud 

The centre of gravity of the cloud of unit-points in R
p
 is the point G whose co-ordinates are the 

average values of the p variables. It represents a virtual unit with the system‟s overall average 

behaviour. Obviously, if the variables are centred (i.e., the value of the average is 0 for all of them), 

the centre of the cloud coincides with the origin of the reference system (G  O); the cloud is said 

to be centred. 
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The analysis we wish to perform is focused on the differences existing amongst the n units, and to 

which variables these differences can be ascribed: from a geometrical point of view, we want to 

observe how much and in which way each unit differs from the average behaviour of the set  I, 
represented by the cloud‟s centre G (or by the origin O, if the cloud is centred). It is reasonable to 

assume as an indicator of "how much" the distance of each unit-point from G, and to associate "in 

which way" with the direction of such elongation (i.e., to the variables which more contribute to that 

distance). 

 

Figure 6.2 – The cloud of figure 6.1 centred. 

6.1.3 – The Cloud’s Inertia 

Suppose the cloud to be centred. We call Inertia of the unit i with respect to the centre G  O the 

product of the mass of i by the square of its distance from O: 

Inertia ( i )  =  mi d
2
(xi,O)  = j mi xij

2
 

As a measure of the cloud's dispersion we assume the total Inertia Intot( I ) of its points.  

Intot( I ) = i mi d
2(xi,O) 

The Inertia of the cloud has a simple interpretation: it arises from the units' difference of behaviour, 

i.e. from the fact that the variables assume different values in different units, and have therefore a 

non-null variance in I. Were this not the case, the cloud would collapse onto its centre and its Inertia 

would be 0. 

It is easy to verify that the total Inertia is equal to the sum of the variances of the p variables 

 Intot( I ) = i mi d
2(xi,O) = imi(jxij

2) = j(imixij
2) = jvar(j) 

In particular, if the p variables are standardised the contribution of each of them to the Inertia is 

1, and Intot = p. 

6.1.4 – The interpretation of the relationships among the variables in R
n
 

In R
n
 every point can be interpreted as a variable, i.e. an array of n values (its co-ordinates) 

measured on the n units. If the variables are centred, it can be proved that:  
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 the distance of a variable-point j from the origin is equal to the variance of that variable. 

Therefore, if the variables are standardised all the points representing them lie on the surface of 

a hypersphere centred on the origin and with radius 1; 

 the correlation between two centred variables j and k is equal to the cosine of the angle formed 

by the segments that join their representative points with the origin. Remember that the 

correlation of two variables is a measure of the strength of their association over the set  I: it 

varies between +1 (perfect positive association) and -1 (perfect negative association). If the 

variables are standardised, two variables having correlation +1 are represented by coincident 

points; two variables having correlation -1 are represented by points opposite with respect to the 

origin. 

 

Figure 6.3 – Representation of variable-points in R
n
. It can be proved that 

           cos  = corr(var j, var k) 

      i.e., the cosine of the angular distance between the two variable-points j and 

     k measures the correlation between the two variables. 

 

Figure 6.4 - The cloud in the two spaces R
p
 and R

n
. In R

p
 the cloud is centred and its projection 

onto any axis passing through O (e.g., the axis ) is also centred. The two variables j 

and k are highly correlated. This can be seen from the cloud's shape in R
p
 and from 

the small angle between the two variable-points in R
n
. 
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The properties of the two clouds (statistical units, variables) are therefore different: if the variables 

are centred, the origin in R
p
 is the centre of the cloud of the units. They are scattered about it, the 

level of the dispersion being measured by the cloud's Inertia. If the cloud is projected onto any axis 

passing through the origin - not necessarily a co-ordinate axis - the resulting uni-dimensional cloud 

is also centred (see figure 6.4). 

In the other space, as the angular distance between two points is related to the correlation of the 

variables they represent, the cloud is unevenly distributed around the origin: if all variables are 

highly positively correlated, the cloud lies on the same side of O, without any symmetry. This 

difference, that affects the interpretation of the analytical results in the two spaces, is a consequence 

of the different meaning of the rows and columns of the table and of the non-symmetry of the 

treatment to which the table is submitted (the average is computed by column and not by row, 

columns are standardised, etc.). 

6.2 – Introduction to the factorial analyses: PCA and ACORR 

This is not the right place for a detailed description of the statistical theory on which the two 

Factorial Analyses included in ADDATI (the Principal Components Analysis and the Analysis of 

the Correspondences) are based. These methods are very interesting and useful, but are well beyond 

the limits of a User Guide. However, a user that wants to master these powerful statistical 

techniques as exploratory tools, not just as a mean to reduce the dimensionality of the description 

before clustering the units, should spend some time having recourse to some specific textbook. 

The PCA and ACORR are quite similar. Both accept as input a data table (also a very large one) 

and explore the relationships among its elements (rows and columns). The purpose is to simplify the 

representation by recognising (i.e., by suitably constructing) a limited number of new underlying 

variables (called factors) sufficient to summarise the more relevant aspects of the description, with 

a tolerable loss of details. This is obtained by rotating, in an optimal way with respect to the cloud, 

the reference system of the geometrical space where the phenomenon is represented. Remember 

that, according to the preceding section, every row and column of the table (respectively, statistical 

units and variables) can be represented as points in a suitably defined geometrical space. 

The difference between the two analyses stem from the nature of the table processed: 

 a table of quantitative or binary variables in the case of a PCA; 

 a contingency table or a table of categorical variables for ACORR. 

Both techniques carry out a preliminary transformation of the data table, different in the two cases. 

We will describe in detail the parameters necessary for the correct control of a PCA, and how they 

are entered. ACORR puts more or less the same questions, so in that case the description will be 

more concise. 
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6.3 – The Principal Components Analysis (PCA) 

Use The program performs a Principal Components Analysis of a data table consisting of 

quantitative and/or binary categorical variables. 

Binary categorical variables, i.e. categorical variables with exactly two categories, are 

recoded on the fly converting each of them into a new variable, having value 1 for units 

that take the first category, and value 0 for the others (whatever the codes used for the 

original categorical variable). It can be proved that such variables can be processed with 

ACOMP. 

All input variables are normalised by the program: each of them will have mean 0 and 

standard deviation 1, and each of them will have the same importance in the analysis. 

The user can set the program so as to by-pass this normalisation step and diagonalise the 

matrix of covariances instead of using the table of correlations, which is the most frequent 

option. This decision should be taken only by expert users and in particular 

circumstances: better, in general, to stick to the default settings, using the correlations 

matrix. 

Limits No particular limit on the number of variables, active or supplementary, that can be 

process. The convenience not to use too many variables stems only from the need to 

obtain results interpretable with a minimum of clarity. Actually, when the number of 

variables is increased the interpretation tends to become more and more difficult. 

Advice The variables to be analysed should be carefully chosen, trying not to invalidate the 

exploratory power of the method with a careless selection. Again, we remark that the 

analyst‟s skill manifests itself also by constructing essential tables. 

Credits The exercise on Kenya uses a data file prepared by Annalisa Conte, former FAO 

Consultant, for the ADDATI Tutorial she wrote for the IGADD EWFS Project back in 

November 1992. 

The input data table describes a set of n statistical units (the rows) by means of p quantitative or 

binary variables (the columns). By default, the variables are standardised. 

Note: The program performs the standardisation automatically. The values of each variable are 

shifted in such a way that its mean becomes 0: i.e., each value is converted into the difference 

with respect to its average. Besides this, all variables are so scaled that the variance of each 

of them becomes 1: because of this operation, each variable assumes the same importance in 

the analyst. 

Consider the figure 6.5. It shows a simplified case, with only two (standardised) variables. Each unit 

can be represented as a point in a two-dimensional space R2. The shape of the cloud is a stretched 

oval, as the variables are strongly correlated. This means that the value of one variable (e.g., y) can 

be inferred with a good approximation when the other is known, and vice versa. The second 

variable repeats part of the information already conveyed by the first one: only a little part of its 

information is actually original (i.e., independent from the other, or non-repeated). 

Let us consider the bundle of all the straight lines passing through the origin O. The cloud of unit-

points can be projected onto any such line: the resulting uni-dimensional cloud is dispersed about 

O, its dispersion being measured by its Inertia defined in section 6.1.  
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In particular, owing to the fact that the original variables have been standardised, the cloud projects 

onto each of the two co-ordinate axes x and y with an inertia equal to 1, that exactly represents the 

value of each normalised variable‟s variance. On any other line through O, however, the cloud 

generally projects with an inertia different from 1. 

 

Figure 6.5 - A generic point P is represented by the pair of co-ordinates (x,y) with respect to the 

original variables, by the pair (, ) on the new rotated reference system. 

In general, an axis exists - indicated with  in the figure - onto which the cloud projects with a 

maximum inertia (we could also say: maintaining at best the distances amongst its points). This is 

called the first factorial axis, and the signed distance from O of the projection of each point is the 

first factorial co-ordinate of that point, or its first Principal Component. 

The cloud projects onto the axis  perpendicular to  with a much smaller inertia. This completes 

the description when the dimensions are only two: it is easy to prove that the sum of the two inertias 

(on the axes  and ) is exactly 2, equal to the cloud's total inertia. 

Every pair of orthogonal straight lines through O leads to a particular decomposition of the total 

Inertia. The advantage of the pair (, ) with respect to (x, y) is that the small fraction of inertia 

"explained" by the axis -can be easily ignored: this leads to an acceptable uni-dimensional 

simplification of the description of the original bi-dimensional phenomenon. 

These simple considerations can easily extend to the case of p variables: the set of units is 

represented by a cloud of n points in a p-dimensional space. The value of the total Inertia, after 

normalising the variables, is p. It is always possible - and convenient, if at least some of the 

variables are sufficiently correlated - to determine an axis (called "first principal axis") onto which 

the cloud can be projected maintaining the maximum possible inertia. This amount of inertia is 

known as the eigenvalue associated with the axis. A second axis is then determined, orthogonal to 

the first that retains the maximum possible fraction of the residual inertia, and so on, until the 

description is completed. 

var1

var2 fattore 

fattore





O





P

x

y
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These new axes can be assumed as a new reference system, alternative to the initial one. The 

phenomenon is the same, but our viewpoint, expressed by the axes, is changed; this allows us to 

focus on the most relevant aspects expressed by the first factors. As the rate of explained inertia 

progressively decreases from the first to the last factor - i.e., factors are ordered according to 

decreasing values of the associated eigenvalues – ignoring the last factors leads to a reduction in the 

dimensionality of the description at the cost of a minimal loss of information. 

6.3.1 – An example 

We will illustrate the operational use of the PCA, and the interpretation of its results, by means of a 

didactic example. The table processed describes some features of Kenya‟s 41 administrative 

districts. Of course, similar examples could be conceived for many other countries, but keep in 

mind that the variables depend on the objective of the analysis, and are generally not equivalent in 

different contexts. Statistical systems are designed differently in different countries, and collect 

differently defined variables. The method is portable, but in general no fixed recipe about data 

is possible. 

The input file KENYA.DAT (documented in KENYA.TXT) consists of 41 records. Once loaded in 

ADDAWIN, the first step is usually the computation of some elementary statistics, correlations etc., 

before going through a Principal Components Analysis and a Classification. 

Each record refers to one district, and contains the values of the following variables: 

 the name of the district (used to label the district in the printouts) 

 population (used as weight in the analysis - see below) 

 average fertility rate 

 average wage (in the formal economy) 

 amount of high potential land per capita 

 activity rate (in the formal economy) 

 cereal production per capita 

 cattle per 1000 inhabitants 

 goats and sheep per 1000 inhabitants 

 cash crop production per capita 

The units of measure are not indicated. Some values are just rates, therefore pure numbers, but for 

some others the information on the used units of measure was lost over time. Anyway, as the same 

unit was used to measure a variable for all districts, this uncertainty does not subtract anything to 

the validity of the exercise. 

In each record the first two fields are the label and population of the district; the latter is assumed as 

the district's weight throughout the analysis. The last seven variables, that describe some economic 

features of the district, are active in the analysis while the fertility rate, not homogeneous with the 

others, is used as supplementary. This means that it will not contribute to determine the factors - 

computed on the basis of the active variables only - but its relationship with the active variables 

(and with the factors) will be investigated. 

A table so conceived is aimed at exploring the economic features of the districts as well as the 

relationships existing amongst the variables. 

The fertility rate does not make much sense as such, and is added here mainly to illustrate the use of 

supplementary variables, with little concern for the meaning. However, it will allow the user to 

single out the economic characters more correlated with a high or a low fertility rate. 



ADDATI, User Guide – Chp. 6: The Factorial Analyses                                                                                                             6-10 

 

The comments concerning the example will be indicated with the simble "". 

6.3.2 - Entering the analysis control parameters 

Select the PCA (Analysis→Principal Components Analysis) from the Menu. The dialog shown in 

the figure 6.6 is displayed and the user is prompted to enter some control parameters. 

First of all, highlight the Dataset (just one) that contains the variables to be processed. In our case 

only the Kenya Dataset has been loaded, but this may not be always the case. If the variables to be 

input to the PCA are spread over several Datasets, a new Dataset must be created to gather all of 

them. 

In the centre of the dialog there are three listboxes: the one in the middle lists all the variables in the 

Datasets that can be processed by a PCA. This depends on their scale, as the note in the upper-right 

corner explains. The analyst chooses the variables to be used as active or supplementary, moving 

them to the appropriate list, to the left or to the right respectively. The variables left in the middle 

list will be ignored in the analysis. 

 

Figure 6.6 – PCA: the main dialog 
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 The path of the output directory must be provided, where all the output files will be written. In 

detail, they are: 

1. a file named ACOMPnnn.TXT („nnn‟ is a progressive number to avoid overwriting), that 

will include the detailed numeric information on which the interpretation must be based; 

2. a file using as name the DS label and with extension .FPL (in our case, „Kenya.FPL‟), 

storing the information that the utility FACPLAN will use to display the projections onto 

the factorial planes; 

3. a file named as the DS label and with extension .PCS (in our case, „Kenya.PCS‟, where 

PCS stands for Principal ComponentS), storing the number of principal components that 

the analyst decides to use for clustering (see below); 

4. a file named as the DS label and with extension .TMP (in our case, „Kenya.TMP‟), saved 

together with the PCS file, where the values of the input variables are stored in binary 

format. It will be used later to compute the average profiles of the classes. 

 Indicate an identifier (a variable of type ID) existing in the records to label each units, or ask 

the program to generate automatically a list of progressive identifiers. If the statistical units are 

administrative areas, for which a cartographic file of borders is available (e.g., an ArcView 

shapefile), a natural id is the cartographic code associated with each unit. This will enable the 

analyst to easily produce a map of the resulting classification. 

 Select a variable, among those listed in the low-right combo, to be assigned as weight to the 

statistical units. Any QUANTITATIVE or COUNT variable can be used as weight (the 

population, which is a COUNT variable, is typically used when administrative areas are 

processed). Alternatively, all units can be assigned the same weight, which is typical when 

working with individual units, like persons or households, though the value of a “raising factor” 

is often used as weight when carrying out an analysis on data from a sample survey, and results 

valid for the universe are desired. 

  Besides the active units, whose relationship with the variables will contribute to determine the 

factors, it is also possible to include in the analysis a set of so-called supplementary units, 

which have no part in constructing the factorial space, but can be projected onto the factorial 

planes, and for which the relative contributions are computed (the absolute contributions are 

obviously null, see below). The aim is to get more information from the way these 

supplementary objects are placed with respect to the active ones and the variables. 

By default, all the units in the Data Set are processed as active. You can change the number of 

active units and add some supplementary units, but keep in mind that the first units in the DS, 

in the requested number, are assumed as active; the units taken as supplementary, if any, are 

those that immediately follow them. This condition, quite strict, might be relaxed in future 

releases of ADDAWIN. 

Example If the active rows describe the behaviour of a group of districts in a given year, the 

supplementary rows may describe the same districts in a different year, thus permitting a 

qualitative visualisation and interpretation of the variations occurred. 

  By default, the analysis is performed on the correlation matrix. Do not change this setting if you 

are not an expert, or you have no good reason to do it. 

The figure 6.7 shows the dialog filled with the control values for the Kenya analysis. 
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Figure 6.7 – The dialog of figure 6.6, suitably filled. 

Active variables contribute to the construction of factors, while the supplementary ones are used 

only for descriptive purposes. The total variance of the table, to be split amongst the factors, is only 

the one contributed by the active variables. 

In general, only part of the variance of the supplementary variables can be "explained" in the 

(factorial) space spanned by the active ones. In other words, in general a supplementary variable 

cannot be exactly expressed as a linear combination of the active ones.  

There is only one supplementary variable (the fertility rate) in our example. 

After filling the dialog, press the OK button. An editor window like the one in figure 6.8 will 

appear. It consists of some lines of comment, headed by a „#‟ character, followed by some other 

lines that contain, in double quotes, the long and short names of the variables to be processed. 
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Figure 6.8 – The edit window to confirm or modify the variables‟ short names. 

Note For each variable, both a long and a short label can be specified in the Dataset Documentation file. 

Short labels are used in multivariate and clustering procedures. If for a variable no short label is 

provided, one is automatically created in ADDATI by truncating its long name to its first twelve 

characters. As what results is not guaranteed to have a clear meaning, the names (long and short, 

supplied or created) are displayed in the editor. Short labels can then be modified by the user, 

maintaining the twelve character limitation and the double quotes. 

Actually, the role of the editing window is more complex and depends on the scale of the variables 

(whether they are QUANTITATIVE or BINARY, and PCA is used; or COUNT or CATEGORIAL, 

requiring an Analysis of the Correspondences). Until you become sufficiently expert, read 

carefully the lines of comment, which depend on the variables’ scale. 

Save the file if you have changed something, and close the window. The modified short labels, if 

any, are stored in the Dataset documentation: remember to save the Dataset before exiting 

ADDAWIN if you wish to keep these changes for future use. 

At this point the variables are standardised and their correlation matrix is computed and saved to the 

output file (conventionally named ACOMPnnn.TXT). Starting from the correlation matrix the 

factorial axes and the associated eigenvalues are computed.  

Two windows are then displayed, that give the analyst the possibility to decide how many Principal 

Components to save for various purposes. 

The first one (see figure 6.1) displays the contents (at least, the part written so far) of the output file 

ACOMPnnn.TXT. It shows the eigenvalues in the case of our Kenya example: they are a measure 

of the explanatory power of the various Principal Components (their Inertia). After examining it, the 

analyst must fill the dialog of figure 6.9, deciding how many Components to save for clustering, for 

the interpretation of the analysis or for the visualisation of the factorial planes. 
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7 SIGNIFICANT FACTORS DETERMINED - SHARE OF INERTIA: 

TOTAL INERTIA   = 7.000000 

 

|    |           |EXPLAIND|CUMULATD| 

|  # | EIGENVALUE| INERTIA| INERTIA| 

|    |           |   (%)  |  (%)   | 

|----|-----------|-----------------| 

|  1 | 2.5354424 | 36.221 | 36.221 |******************************************* 

|  2 | 1.7289826 | 24.700 | 60.920 |***************************** 

|  3 | 1.0887727 | 15.554 | 76.474 |****************** 

|  4 | 0.8229769 | 11.757 | 88.231 |************** 

|  5 | 0.4085767 |  5.837 | 94.068 |******* 

|  6 | 0.2909169 |  4.156 | 98.224 |***** 

|  7 | 0.1243322 |  1.776 |100.000 |** 

Table 6.1 – The eigenvalues associated with the Principal Components measure their explanatory 

power. 

 

The value of the total inertia, distributed over the Principal Components, is 7, as there are 7 active 

variables and each of them, being normalised, contributes a variance equal to 1. The cloud 

maintains an Inertia equal to 2.54 when it is projected onto the first factorial axis: this is the 36.22 

per cent of the overall Inertia. The last column of the table shows the cumulated inertia explained by 

all the principal components considered up to that point: it can be seen that the first five factors 

summarise 94.07% of the total inertia. This means that in the 5-dimensional space spanned by the 

first 5 factors the cloud maintains 94.07 per cent of its inertia, while the residual 5.93% is lost. 

This could be an acceptable simplification; yet, as the variables are only seven (and so are the 

factors) we will decide in this case to retain all of them for clustering.  

Moving up on the file displayed, just before the eigenvalues, the correlation matrix can be 

inspected: the table 6.2 shows it for our example on the 41 Kenya districts. The matrix includes all 

the correlations among active and/or supplementary variables. 

CORRELATIONS (*1000) 

----------------------------------------------------------- 

             ave_  hp_l  act_  cere   cat   goa cash_ fert_ 

             wage   and  rate   als   tle   _sh  crop  rate 

----------------------------------------------------------- 

 ave_wage    1000 

  hp_land    -429  1000 

 act_rate     698  -263  1000 

  cereals    -529   579  -157  1000 

   cattle    -125   233  -257   100  1000 

   goa_sh     -63   105  -240  -165   631  1000 

cash_crop    -310   116   162   323    -6   -96  1000 

fert_rate    -462   302  -193   625  -103  -330   264  1000 

Table 6.2 - The correlation matrix as it appears in the PCA printout. 

  The highest correlation is between "average wage" and "activity rate", mainly due to the urban districts of 

Nairobi and Mombasa; a high correlation also exists between "cattle" and "goat_sheep", meaning that these 

two activities tend to be present in the same districts. The "fertility rate" appears to be positively correlated 

with the cereal production, meaning that it specially characterises rural districts. 

These considerations can in general be further developed and refined, leading to a first identification 

of groups of correlated variables. 
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6.3.3 – How many Principal Components should be saved? 

The user decides how many factors fit his/her needs, then the factorial co-ordinates are computed 

and saved to file for interpretation and clustering.  

According to the values entered in the dialog of figure 6.9, the Clustering Analysis that follow will 

assume as input all the seven Principal Components, while the first three of them, summarising 

76.47% of the overall variance, will be used to illustrate the characteristics of the districts, six for 

the variables, and three for their projections onto the factorial planes. Six is the maximum number 

of PCs that can be used for these last operations. 

 

Figure 6.9 - The dialog on how many PCs to use 

In general: 

Principal Components to be used to cluster the statistical units 

It is necessary to save the factorial co-ordinates before proceeding to a non-hierarchical 

classification of the units. For a PCA, it is generally convenient to save a number of factors 

sufficient to explain 80% or 90% of the overall inertia. When working with categorical variables 

(and ACORR) a lower rate is generally sufficient. 

There is however an uncertainty: even though the rate of global Inertia explained by the selected 

factors is sufficiently high, the representation of some particular variable can be unacceptably low. 

In order to assess this, and increase the number of factors if necessary, use the “Show Variables’ 

Quality” button. 

  Kenya example: we have already decided (see above) to use all the factors for clustering (though the last, 

explaining only 1.78% of the inertia, could easily be ignored). Therefore the value '7' is entered. 

Description of the statistical units 

It is convenient to have these contributions saved only when one is interested in the behaviour of 

some particular units. Skip it (i.e., enter „0‟) if the units are too many, or when you are not particular 

interested in their individual behaviour.  

For each unit and each requested factorial axis the following information is saved on request: 

 the factorial co-ordinate of the unit on the axis; 

 the relative contribution (fraction of the unit's inertia explained by that factor); 
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 the absolute contribution (fraction of the factor's overall inertia contributed by the unit); 

Their meaning will be illustrated further on. 

  Kenya example: as units are only 41, it might be interesting to examine thoroughly the behaviour of some of 

them. Let us request the first three factors to be saved, that explain 76.47 % of inertia. 

Description of the variables 

It is always convenient to request it for the most relevant factors, as the meaning of factors is 

derived from the variables‟ contributions. For each variable and each requested factor the following 

information is saved to file ACOMPnnn.TXT: 

  the factorial co-ordinate of the variable on the axis; 

  the relative contribution (share of the variable's inertia explained by that factor); 

  the absolute contribution (share of the factor's overall inertia contributed by the variable); 

 For our Kenya example we request the contributions on 6 factors, sufficient to explain 98.22% of the overall 

variability (the explanatory power of the last factor is negligible). We will use these contributions to interpret 

the meaning of factors. 

Projections onto the factorial planes 

They may help the interpretation when a plane accounts for a high fraction of the overall variance. 

One must, however, limit oneself to consider only those points (units or variables) that are well 

represented on that plane. 

FACPLAN offers a specific option to select well represented points. 

Even when the projections are used as a starting point, it is expedient to insist that the interpretation 

should always be based on the relative and absolute contributions. 

  Kenya example: three factors are sufficient to display the most interesting factorial planes. 

When the OK button is pushed, the requested principal Components are computed and save for variables 

and statistical units, then the dialog shown below is displayed. 

 

Note It is possible to display on the screen the projections of the cloud onto several factorial planes, 

visualizing at will any combination of units and variables, both active and supplementary. Any 

part of the plane can be zoomed, and the image can be saved and printed.  
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6.3.4 –The table of contributions and their interpretation 

The information described in detail below is stored (on request) in the output file ACOMPnnn.TXT, 

separately for active and supplementary units and variables. 

The table 6.3 shows the information on the variables‟ contributions as it appears in 

ACOMPnnn.TXT. The meaning is detailed for the hp_land variable and the first two factors in the 

table 6.4 here below. 

QLT (quality of the representation): this is the fraction of the variable's inertia globally explained by all 

the factors for which information is printed (six factors were requested in this case). 

It sums up the variable's relative contributions on the printed factors. The table shows that the first 

six factors explain 1000/1000 of the inertia of the variable hp_land. 

INR (variable's total inertia): as all variables are standardised, they contribute equally to the cloud's 

overall inertia which is exactly 7 (there are 7 active variables all having variance 1). INR is here 

expressed as a fraction of the total inertia: 143/1000, corresponding to 1/7. 

In the case of a Correspondence Analysis, the variables (i.e., the columns of the table) have 

generally different values of INR, which depends on the point's weight and on its distance from the 

cloud centre, which represents the overall average profile.  

WEIG   (weight) Importance of the variable in the analysis. As variables are standardised, WEIG has 

conventionally the same value for all. 

---*---------*--------------------*-------------*-------------*-------------* 

  #|   ACT   | QLT WEIG  INR   DIS|  FAC REL ABS|  FAC REL ABS|  FAC REL ABS| 

   |   VAR   |                    |   1  CON CON|   2  CON CON|   3  CON CON| 

---*---------*--------------------*-------------*-------------*-------------* 

  1| ave_wage| 939    1  143  1000| -850 723 285| -180  33  19|  282  80  73| 

  2|  hp_land|1000    1  143  1000|  722 521 206|  136  18  11|  136  19  17| 

  3| act_rate| 957    1  143  1000| -671 450 177|  288  83  48|  608 370 340| 

  4|  cereals| 992    1  143  1000|  692 479 189|  487 237 137|  171  29  27| 

  5|   cattle| 997    1  143  1000|  451 204  80| -671 450 261|  411 169 155| 

  6|   goa_sh| 999    1  143  1000|  282  80  31| -816 666 385|  289  84  77| 

  7|cash_crop| 991    1  143  1000|  281  79  31|  491 241 140|  582 339 311| 

---*---------*--------------------*-------------*-------------*-------------* 

---*---------*--------------------*-------------*-------------*-------------* 

  #|   SUP   | QLT WEIG  INR   DIS|  FAC REL ABS|  FAC REL ABS|  FAC REL ABS| 

   |   VAR   |                    |   1  CON CON|   2  CON CON|   3  CON CON| 

---*---------*--------------------*-------------*-------------*-------------* 

  8|fert_rate| 487    1  143  1000|  437 191   0|  486 236   0|  -77   6   0| 

---*---------*--------------------*-------------*-------------*-------------* 

Table 6.3 - The contributions for the variables on the first three factors. 

 

 # ACT QLT WEIG INR DIS FAC REL ABS FAC REL ABS 

  VAR     1 CON CON 2 CON CON 

    Variable‟s    

 ordinal number    

5 hp_land 1000 1 142 1000 722 521 206 136 18 11 

                                               

                                alphanumeric label  

                       

   information on 

       factor  # 1 

                             

information on 

    factor  # 2 

Table 6.4 - The contributions for the variable hp_land. 

 



ADDATI, User Guide – Chp. 6: The Factorial Analyses                                                                                                             6-18 

 

 

Figure 6.10 - The co-ordinate of a variable-point is the correlation between the variable and the 

factor: 0.722 = cos (44° 47‟) = correlation (hp_land, factor 1). 

DIS is the square of the distance of the variable-point from the origin. It measures the variable's 

variance. Here it is 1 for all variables, as they are standardised. In the variable space, all points 

representing variables lie on the surface of a hyper-sphere with radius 1. 

FAC1 is the co-ordinate of the variable-point on the first factorial axis (it must be read as 0.722). As the 

distance of each variable-point from the origin is exactly 1, FAC1 is equal to the cosine of the angle 

formed by the segment joining the point with the origin and the first factor axis (see figure 6.10). It 

can be shown that this is a measure of the correlation between the variable and the first factor 

(considered as a new variable constructed as the maximum-variance linear combination of all the 

original variables). 

REL CON relative contribution (of the factor to the variable): this is the fraction (x 1000) of the variable's 

inertia explained by the factor. 

Here the first factor explains 52.1 per cent of the variance (over districts) of the high-potential land 

rate. It can be easily shown that for a Principal Component Analysis the relative contribution is the 

square of the corresponding factor co-ordinate (FAC1); it is therefore equal to the square of the 

correlation between the variable and the factor. 

ABS CON absolute contribution (of the variable to the factor's variance): this is the fraction (x 1000) of the 

factor's inertia contributed by the considered variable. Here the 20.6 per cent of the variance of the 

first factor is contributed by the variable hp_land. 

The table 6.5 shows the information concerning the units as it appears in ACOMPnnn.TXT. 

The meaning is the following: 

QLT (quality of the representation): this is the rate of the unit's inertia globally explained by the factors 

requested (they are three in this case). It cumulates the unit's relative contributions on the printed 

factors. 

INR (unit's total inertia): this is the fraction (x 1000) of the total inertia that is contributed by the unit-

point: 

INR = (unit's inertia) / (total inertia) 



ADDATI, User Guide – Chp. 6: The Factorial Analyses                                                                                                             6-19 

 

where the total inertia is the sum of the eigenvalues. The unit's inertia with respect to the origin 

(coincident with the centre of the cloud) is defined as the product of the point mass (WEIG) by the 

square of its distance from the origin (DIS).  

WEIG Weight of the unit in the analysis (so scaled that all weights sums up to 1000); it represents the 

unit's relative importance. 

Here the Kericho district has a population (assumed as weight) that amounts to 41/1000 of the 

Kenya population, while its inertia is 64/1000 of the total inertia. 
---*------------*--------------------*-------------*-------------*-------------* 

  #|    ACT     | QLT WEIG  INR   DIS|  FAC REL ABS|  FAC REL ABS|  FAC REL ABS| 

   |    OBJ     |                    |   1  CON CON|   2  CON CON|   3  CON CON| 

---*------------*--------------------*-------------*-------------*-------------* 

  1|       Busia| 378   19    6  2177| -379  66   1| -120   7   0| -815 305  12| 

  2|     Bungoma| 573   33   19  3999| 1154 333  17|  844 178  14| -500  63   8| 

  3|    Kakamega| 684   67   12  1216| -175  25   1|  281  65   3| -850 593  45| 

  4|       Siaya| 750   31    7  1479|   53   2   0| -215  31   1|-1030 717  30| 

  5|      Kisumu| 295   31    5  1156| -373 120   2|  -57   3   0| -446 172   6| 

  6|    S.Nyanza| 218   53   16  2087|  342  56   2| -148  11   1| -562 151  15| 

  7|       Kisii| 748   57   17  2131|  322  49   2|  451  96   7|-1134 604  67| 

  8|     Turkana| 610    9   36 27314|    5   0   0|-4054 602  88|  484   9   2| 

  9|     W.Pokot| 552   10    6  3723|  650 114   2|-1151 356   8| -555  83   3| 

 10|     T.Nzoia| 789   17   40 16411| 2710 448  49| 2322 329  53|  464  13   3| 

 11|       Nandi| 960   20   47 16726| 2977 530  68| 1868 209  39| 1926 222  67| 

 12|     U.Gishu| 678   20   35 12653| 2026 324  32| 1957 303  43|  807  51  12| 

 13| El.Marakwet| 439   10    5  3506|  281  23   0|-1172 392   8| -293  24   1| 

 14|     Baringo| 628   13   34 17968| 1339 100   9|-3028 510  71|  563  18   4| 

 15|     Samburu| 743    5   48  1280| 4143 257  34|-4960 368  71| 2812 118  36| 

 16|     Kericho| 903   41   64 10870| 2434 545  97|  628  36   9| 1870 322 133| 

 17|      Nakuru| 964   34   17  3403|  663 129   6| 1430 601  40|  891 233  25| 

 18|    Laikipia| 756    9   14 11139| 2412 522  20|  987  87   5| 1277 146  13| 

 19|       Narok| 915   14   34 17515| 2096 251  24|-3130 559  78| 1358 105  23| 

 20|     Kajiado| 781   10   56 40181|  794  16   2|-4829 580 131| 2724 185  66| 

 21|   Nyandarua| 520   15   23 10572| 2251 479  30|  655  41   4|  -51   0   0| 

 22|       Nyeri| 438   32    3   667| -289 126   1|  457 313   4|   -3   0   0| 

 23|   Kirinyaga| 914   19    3   995| -212  45   0|  191  37   0| -910 833  14| 

 24|    Murang'a| 184   42   13  2124|  -99   5   0|  582 159   8| -207  20   2| 

 25|      Kiambu| 393   45   60  9329| -373  15   2| 1503 242  58| 1125 136  52| 

 26|    Marsabit| 804    6   40 44459|  213   1   0|-5721 736 119| 1719  66  17| 

 27|      Isiolo| 569    3   11 27661| -265   3   0|-3614 472  21| 1613  94   7| 

 28|        Meru| 943   54    9  1124| -138  17   0| -105  10   0|-1015 916  51| 

 29|        Embu| 963   17    3  1292| -731 413   4| -168  22   0| -826 528  11| 

 30|    Machakos| 478   67   12  1285| -387 116   4| -480 179   9| -485 183  14| 

 31|       Kitui| 749   30   16  3631|  183   9   0|-1616 719  46| -271  20   2| 

 32|     Mandera| 767    7    7  7129|-1866 488   9|-1332 249   7| -463  30   1| 

 33|       Wajir| 600    9    5  4125| -689 115   2| -963 225   5|-1037 261   9| 

 34|     Garissa| 622    8    8  6548| -726  81   2|-1879 539  17| -114   2   0| 

 35|  Tana_River| 439    6    6  6604|  194   6   0|-1673 424  10|  249   9   0| 

 36|        Lamu| 783    3    1  2869| -979 334   1|  -80   2   0|-1132 447   3| 

 37|Taita/Taveta| 807   10    1   791| -378 181   1|  -12   0   0| -704 626   4| 

 38|      Kilifi| 964   28    8  1933| -702 255   5|   49   1   0|-1170 708  35| 

 39|       Kwale| 788   19    3  1263|  -22   0   0| -876 608   8| -476 180   4| 

 40|     Mombasa| 922   22   40 12597|-3304 866  96|  470  18   3|  689  38  10| 

 41|     Nairobi| 960   54  212 27437|-4708 808 472|  545  11   9| 1966 141 192| 

---*------------*--------------------*-------------*-------------*-------------* 

Table 6.5 - The units‟ contributions on the first three factors. 

Generally speaking, the greater INR in comparison to WEIG, the more peculiar the unit's behaviour. 

In fact, if all unit-points were located at the same distance from the origin their inertia would be 

exactly proportional to their weight. In this case, as both INR and WEIG are scaled to 1000, the two 

quantities would have exactly the same value. 
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The meaning is detailed in the table 6.6 below for the Kericho district and the first two factors. 

 # ACT QLT WEIG INR DIS FAC REL ABS FAC REL ABS 

  OBJ     1 CON CON 2 CON CON 

unit‟s ordinal.  

number    

5 Kericho 903 41 64 10870 -2434 545 97 628 36 9 

                                               

                                   unit‟s alpha- 

                                  numeric label  

                       

   information on 

       factor  # 1 

                             

information on 

    factor  # 2 

Table 6.6 - The contributions on the first two factors for the Kericho district. 

A value of INR greater than WEIG (as in the case of Kericho) means that the point has a distance 

from the origin greater than the average distance, and that its behaviour is quite particular (it must 

be remembered that the origin represents the system's average behaviour). A more careful 

inspection is needed in order to identify the profile components involved; i.e., on which aspects the 

district is peculiar. The results of the Principal Component Analysis could be used for this purpose, 

but it is far more simple to consider the profile of the class to which the district is assigned in the 

subsequent cluster analysis that follows: if the variability within the class is neglected, the class 

profile can be assumed to represent the behaviour of all the units assigned to it. 

It must be kept in mind that the distance between the unit-point and the origin is a measure of the 

global difference between the unit's behaviour and the overall average behaviour of the system (i.e., 

the set of all the units considered, in our case Kenya as a whole). A Principal Component and a 

Correspondence Analysis always assume as reference the average behaviour of the whole system, 

and analyse in which way and how much the various units differ from it (and from one another). 

This admits a straightforward interpretation in most cases. 

DIS is the square of the distance of the unit-point from the origin. The greater DIS, the more the unit's 

profile globally differs from the average behaviour, represented by the cloud centre. 

FAC1 is the co-ordinate of the geographical unit on the first factorial axis (for Kericho, it is to be read as 

2.434). 

REL CON relative contribution (of the factor to the unit): this is the fraction (x 1000) of the unit's inertia 

explained by the factor. In the case of Kericho, the first factor is sufficient to explain 54.5 per cent 

of the district's inertia. 

ABS CON absolute contribution (of the unit to the factor's variance): this is the fraction (x 1000) of the 

factor's inertia contributed by the unit. Here, 9.7 per cent of the first factor's variance is contributed 

by the Kericho district. 

6.3.5 - Interpretation of the factors 

The meaning of the factors, considered as new variables, can be derived from their correlation with 

the initial variables, i.e. by determining which variables more contribute to them. 

Factor 1 

Look at the table 6.3. The highest absolute contributes to the factor come from ave_wage and 

act_rate (which lie on the negative side of the axis) and from hp_land and cereals which lie on the 

positive side. This represents the most relevant set of relationships existing in the correlation matrix. 

Ave_wage and act_rate are positively correlated with one another, and so are hp_land and cereals; 

the two variables in the first group are negatively correlated with those in the second group. Thus, 
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the first factor captures the main variability present in the system (at least, according to the set of 

variables we chose), namely the one between rural districts - with low values of activity rate and 

average wage associated with values of hp_land and cereal production above the average - and 

urban districts, characterised by opposite features. 

An exam of table 6.5 shows which districts are more affected by this opposition: it is sufficient to 

single out those receiving a strong relative contribution (REL CON) from the first factor. They are 

Mombasa, Nairobi and, to a less extent, Mandera on one side and T.Nzoia, Nandi, Kericho, 

Laikipia, Nyandarua and Embu on the other. The other appear much less involved: their behaviour 

cannot be reduced to the above opposition and seems to depend on other relationships existing 

among the variables. 

Note The first factor captures and summarises a relation among the four mentioned variables in which 

the above mentioned districts are involved. Some other district might have a high value of 

act_rate, but not associated with a high value of ave_wage and with a low level of cereals 

production and hp_land. 

Factor 2 

It summarises the positive association existing between the presence of goats_and_sheep and 

cattle in some districts (those showing in table 5 a high REL CON value for factor 2, associated 

with a negative value of the FAC2 co-ordinate: Turkana, Baringo, Narok, Kajiado, Marsabit, Kitui, 

Garissa, Kwale and others to a minor extent). From table 3, a negative correlation appears to exist 

also between the presence of cattle/goat_sheep and that of cereals/cash_crop (characterising a few 

districts; e.g., Nakuru) showing on the second factor a high REL CON value associated with a 

positive FAC2 co-ordinate. 

The interpretation could continue for the other factors, which become anyway less and less relevant. 

 

The files output by ACOMP 

 ACOMPnnn.TXT is the text file that contains the information to be interpreted. 

 Label.PCS is a binary file, written on user's request, that contains the factorial co-

ordinates (together with some extra information) used by NONGER to cluster the units. 

 Label.TMP (that accompanies the .PCS file) is a binary file that stores the original values 

of the processed variables, and will be used by the Clustering procedure when it computes 

the average profiles of the classes. 

 Label.FPL (written on user's request) is a text file that contains the information passed 

over to FACPLAN to display the projections onto the factorial planes. 

In the filenames ‘Label’ stands for the label that identifies the Dataset on whose variables the 

analysis is carried out. 
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6.4 - The Analysis of the Correspondences (ACORR) 

Use, limits and advices 

What was said for ACOMP holds also here. 

The standard input table for a Correspondence Analysis is a contingency table, i.e. a table obtained 

by cross-tabulating two categorical variables. 

If the two variables have n and p categories respectively, the resulting contingency table has n rows 

and p columns. The table's generic cell (i,j) counts the units that simultaneously take the i-th 

category of the first variable and the j-th category of the second one. 

Some only apparently different tables can be actually thought of as contingency tables, and dealt 

with via a Correspondence Analysis: 

 tables obtained by setting side-by-side several contingency tables that count the same basic 

units (households, individuals, firms, etc.); 

 binary tables obtained from qualitative descriptive tables by converting the qualitative 

(categorical) variables to (binary) complete disjunctive form. 

The latter case is less intuitive, but quite interesting in practice for its possible applications to the 

analysis of Survey data. 

Example 

Think of a table where the n rows represent n statistical units, described by p categorical variables, 

some of which may have been obtained by recoding to categorical form some variables directly 

observed as quantitative. When the p variables are converted to complete disjunctive form, each of 

them produces a table of zeros and ones, having as many columns as the variable has categories. 

Exactly p side-by-side binary tables are obtained, each of which can be seen as a contingency table 

cross-tabulating the variable "unit" with one of the descriptive variables: for each row (unit), a cell 

corresponding to a category not assumed by that unit contains 0 (i.e., it includes no unit), and a 

cell corresponding to a category assumed contains 1 (i.e., it counts exactly one unit). The 

structure is quite banal, but it can be thought of as a multiple contingency table. In this case, as the 

rows represent a set of units, their mutual similarity structure can be analysed via ACORR, 

followed in case by a classification. 

In a contingency table rows and columns have a similar role and are dealt with symmetrically in 

ACORR. The purpose of the method is to analyse the similarity among rows (with respect to 

columns), the similarity among columns (with respect to rows) and the relationships existing 

between rows and columns. 

Owing to the table's symmetry, the analytical treatment can focus on rows as well as on columns,. 

The table 6.7 shows a small didactic example: a system consists of three geographical units, each 

described by the amount of cultivated land per type of crop (only three crops are considered 

explicitly, and the fourth category summarises all the rest). ACORR would convert the initial table 

6.7a) to that of row profiles 6.7b), or that of column profiles 6.7c). Actually only one of these 

tables needs to be analysed; the results for the other are derived through simple transformations. 
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 teff mais sorghum other   

unit 1 40 60 50 100 250  

unit 2 100 100 200 200 600 a) 

unit 3 80 120 100 200 500  

 220 280 350 500 1350  

       

 teff mais sorghum other   

unit 1 .16 .24 .20 .40 250  

unit 2 .17 .17 .33 .33 600 b) 

unit 3 .16 .24 .20 .40 500  

 .16 .21 .26 .37 1350  

       

 teff mais sorghum other   

unit 1 .18 .21 .14 .20 .19  

unit 2 .45 .36 .57 .40 .44 c) 

unit 3 .36 .43 .29 .40 .37  

 220 280 350 500 1350  

       

Table 6.7 

a) An example of a contingency table: each cell counts the area (in thousands of acres) per 

administrative unit and type of crop. 

 The totals (marginal values of rows and columns) are also shown. 

b) The row profiles computed from the table a). Each row shows, for the concerned unit, the 

percentage of the cultivated land dedicated to each type of crop; the last row gives the same 

information for the whole system and is assumed as the "normal" (or average) behaviour.  

The relative specialisation of a unit is determined by comparing its profile with the overall 

profile. In ACORR, the weight of each unit is proportional to its marginal (i.e., to the total 

cultivated land in the unit) and is computed by the program itself. 

c) The column profiles computed from the table a). Each column shows, for the concerned crop, 

how the cultivated land is distributed in percentage on geographical areas. The last column 

gives the same information for the whole system and is assumed as the "normal" (average) crop 

distribution on geographical units.  

The relative concentration of a crop is determined by comparing its distribution with the overall 

profile. In ACORR, the weight of each column is proportional to its marginal (i.e., to the total 

cultivated land for the concerned crop) and is computed by the program itself. 

Owing to the symmetrical role of the two variables, the analysis can focus indifferently on the rows 

or the columns. The table 6.7 shows a little didactic example: a system consists of three geographic 

units, each described by the area dedicated to some types of crops (only three types are considered 

explicitly, while the fourth counts all residual crops). ACORR converts the initial table 6.7a) into a 

table of row profiles 6.7b) or one of column profiles 6.7c). It is sufficient to analyse only one of 
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them: the program automatically determines which is computationally the more convenient. The 

results relative to the other table are then derived through some simple transformations. 

According to the table 6.7b, as there are four descriptive variables, each unit is represented by a 

point in a four-dimensional space, whose co-ordinates are the components of the profile. The point 

is assigned a weight proportional to the cultivated land in the unit (the row's marginal value). All 

together, there are three weighted profile patterns in a four-dimensional space. 

Symmetrically, according to the table 6.c each crop can be represented as a point in a three-

dimensional space (there are three geographical units), whose co-ordinates are the components of 

the corresponding column-profile. The crop-point is assigned a weight proportional to the overall 

area where that crop is cultivated. In this case we have four weighted profile patterns in a three-

dimensional space. 

Consider the table 6.b. The profiles of the first and the third units are identical; the reason is that the 

two corresponding lines in table a) are proportional. The two units have a different amount of 

cultivated land (and therefore a different importance for the analysis) but an identical percentage 

distribution of that land amongst crop types. The two corresponding unit-points are coincident in the 

representation space. 

Were all the lines in the a) table proportional, all the unit-points would be coincident: there would 

be no cloud, only a point, and no variability to be analysed. On the contrary, when the units have 

different behaviours the corresponding points are scattered about the cloud centre, which represents 

the system's average behaviour (i.e., the overall crop mix, given by the marginal row in the table 

6.7b. 

Similar considerations can be developed for the table 6.7c. 

The distance between two points-profile in R
p

 is computed according to a modification of the usual 

Euclidean formula, and is known as "chi-square distance". For the definition the user is referred to 

a multivariate statistics textbook. 

ACORR processes the table of profiles in a way very similar to what was already explained for the 

PCA. Eigenvalues, factorial co-ordinates and contributions are determined, on which the 

interpretation is based. The following differences must be remarked: 

  in ACORR, differently than in PCA, rows and columns play a totally symmetrical role. The 

tables of row and column contributions, saved to file ACORRnnn.TXT, are interpreted in 

exactly the same way. In ACORR no standardisation of variables is performed, no correlation 

table is printed and we prefer to speak of a stronger or weaker association of two given lines 

(two rows or two columns) with respect to the lines of the other set. 

  in ACORR the first eigenvalue (called "trivial" or "banal") is always 1: it is of no interest, as it 

is a mere consequence of the transformation to which the original table a) has been submitted to 

compute the profile table b); therefore, it is ignored. All other eigenvalues (the meaningful 

ones) lie between 1 and 0. 

  The number of non-null eigenvalues is generally less than what could be expected from the size 

of the data table. The dimensionality related to the number of the columns is only apparent (and 

redundant): in every line of each single contingency table the values of the cells add up to the 

same total, i.e., to the number of the counted units. Therefore, the columns are not independent, 

and this reduces the actual dimensionality of the feature space. 

  The total Inertia of the cloud can be computed in a very simple way from the number of the 

categorical variables and that of their categories: 



ADDATI, User Guide – Chp. 6: The Factorial Analyses                                                                                                             6-25 

 

1
.

. var

n of categories

n of iables
Inertia    

Thus, for example, if the table to be processed consists of five side-by-side contingency tables 

(i.e., if there were five initial categorical variables), with 4, 4, 3, 4 and 4 categories respectively 

(19 categories altogether), then the total Inertia of the cloud is 2.8 = (19/5) –1. 

  If the original data table consisted of categorical variables, automatically recoded to binary form 

by ACORR, the explanatory power of the first factors is less than what could be expected in 

PCA (or even in ACORR, when processing a normal contingency table). This is an effect of the 

conversion to complete disjunctive form, which has increased the number of the columns of the 

table passed on to PCA, introducing some fictitious inertia. Even if the fraction of inertia loaded 

on the first factors seems to be low, their importance when interpreting results is still relevant.  

6.4.1 – Entering the control parameters 

ACORR and PCA need almost the same parameters to be specified in order to carry out an analysis, 

and similar dialogs must be filled. Therefore, the reader is referred to the full description already 

given for PCA. We limit ourselves here to illustrate the only question specifically concerning 

ACORR . 

An Analysis of the Correspondences usually takes as input a table obtained by setting side by side 

one or several contingency tables, which count elementary units of the same type (households, 

dwellings, individuals, etc.). 

Tables of qualitative variables 

While working with urban or regional data (especially data drawn from Census or surveys) each 

line of the table often describes an elementary unit (e.g., a firm or a household), by means of some 

qualitative (categorical) variables. In such case, ACORR automatically converts the qualitative 

variables to binary (or complete disjunctive) form: a column for each category, with value 1 if 

that category is assumed by the unit of interest, 0 otherwise. The resulting binary table can be 

submitted to an Analysis of Correspondences, known in this case as a Multiple Correspondence 

Analysis. 

ACORR, like the PCA, uses short names for variables and categories: an edit page is presented to 

the user, in which labels with up to 12 characters for the categories are proposed. Please read 

carefully the instructions on the way to fill it, as they vary according to the particular case.  

In order to ease the interpretation of projections onto factorial planes, use a common prefix for all 

the categories of the same qualitative variables. For example: „TEN_owner‟ and „TEN_rent‟ for the 

tenure; „EDU_sup‟, „EDU_secund‟, „EDU_primary‟, „EDU_litter‟ and „EDU_illitt‟ for the 

education level achieved; „TV_yes‟ and „TV_no‟ for the presence of a TV set, „RADIO_yes‟ and 

„RADIO_no‟ for the radio set, etc. , The categories are often indicated with the same label (e.g., 

„yes‟ and „no‟), and this label style prevents confusion. 

Side-by-side contingency tables 

Data tables that describe administrative units often consist of variables of type COUNT: for each 

administrative unit, the frequency of some underlying elementary units (households, individuals, 

buildings…) is determined for the categories of some suitable categorical variables, describing 

aspects of interest. For example, in each administrative unit: 

- the population can be counted for a given number of age classes; 
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- the population can be counted for a given number of education levels achieved; 

- dwellings can be counted according to the levels of some type of internal service… 

The result is a set of contingency tables written side-by-side, each of them describing the way 

elementary units are split according to a particular descriptive aspect (age, education, etc.). 

In order to compute correctly the class profiles in the non-hierarchical clustering stage that will 

follow, ADDAWIN needs to know exactly of how many contingency tables the data table is 

formed, and which they are. The user is requested to provide this information by separating the sets 

of variables belonging to the same contingency table by means of a line consisting only of an 

asterisk „*‟. This is done in the same editing page used to provide the short names. 

When presented the page, read its comments carefully. 

6.4.2 – The table of contributions and their interpretation 

The information detailed below is stored (on request) in the output file ACORRnnn.TXT, separately 

for active and supplementary rows and columns. The interpretation of results is the same for both 

rows and columns. 

QLT (quality of the representation): fraction of the point's inertia globally explained by the 

factors on which information is printed. It sums up the point's relative contributions on the 

printed factors. 

INR (point's total inertia): fraction (*1000) of the total inertia that is contributed by the point: 

INR = (point's inertia) / (total inertia) where the total inertia is the sum of the eigenvalues. 

The point's inertia with respect to the origin (coincident with the centre of the cloud) is 

defined as the product of the point's mass (WEIG) by the square of its (chi-square) 

distance from the origin (DIS). 

WEIG  Weight of the point in the analysis (so scaled that the total of the weights of all the points 

in a set - rows or columns - sums up to 1000); it represents the point's relative importance. 

Generally speaking, the greater INR in comparison to WEIG, the more peculiar the point's 

behaviour. In fact, if all points were located at the same distance from the origin their 

inertia would be exactly proportional to their weight. In this case, as both INR and WEIG 

are scaled to 1000, the two quantities would have exactly the same value. 

A value of INR greater than WEIG means that the point has a distance from the origin 

greater than the average distance, and that its behaviour is quite particular (it must be 

remembered that the origin represents the system's average behaviour). A more careful 

inspection is needed in order to identify the profile components involved; i.e., in which 

aspects the point is peculiar. It must be kept in mind that the distance between a point and 

the origin is a measure of the global difference between the point's behaviour and the 

overall average behaviour of the system (e.g., if each row represents a district, the cloud's 

centre of gravity represents the Country's average behaviour. 

A Correspondence Analysis always assumes as reference the average behaviour of the 

whole system, and analyses in which way and how much the various units differ from it 

(and from one another). This admits a straightforward interpretation in most cases.  

DIS is the square of the distance of the point from the origin. The greater DIS, the more the 

point's profile globally differs from the system's average behaviour, represented by the 

cloud centre. 

FAC1 is the co-ordinate of the concerned point on the first factorial axis. 
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REL CON relative contribution (of the factor to the point): this is the fraction (x 1000) of the 

point's inertia explained by the factor. 

ABS CON absolute contribution (of the point to the factor's variance): this is the fraction (x 

1000) of the factor's inertia contributed by the considered point. 

The files written by ACORR 

  ACORRnnn.TXT is the output file, to be printed and interpreted. 

  Label.PCS (written on user's request) contains the factor co-ordinates (together 

with some more information) needed by NONGER to cluster the units. 

  Label.TMP (that accompanies the .PCS file) is a binary file that stores the original 

values of the processed variables, and will be used by the Clustering procedure to 

compute the average profiles of the classes. 

  Label.FPL (written on user's request) contains the information passed over to 

FACPLAN to display the projections onto factor planes. 

In the filenames ‘Label’ stands for the label that identifies the Dataset on whose 

variables the analysis is carried out. 
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Cap. 7. – Non-hierarchical Clustering 

 

7.1 – Some notes on numeric Classification 

The purpose of a numeric classification is to group sufficiently similar statistical units into a limited 

number of groups (also called classes or clusters). The similarity between two units can be directly 

observed (e.g. in a survey, by asking specific questions) or it can be computed on the basis of a set 

of observed variables that offer a suitable description of the units of interest. 

Consider for example the provinces of a Country, described by the series of their per capita income 

over some years. Which provinces have a similar behaviour? There is no absolute answer: the result 

depends on the method used, and includes some elements of subjectivity. For example, we could 

perform all possible pairwise comparisons of districts, and rank pairs in order of decreasing 

perceived similarity. 

The similarity depends upon the variables considered; i.e., it is relative to the particular description 

adopted. Two provinces can have a very similar demographic structure, but they can be very 

different for what concerns the educational or occupational levels. 

The similarity level of two units can be defined in several ways. 

Consistently with the geometrical representation adopted so far, according to which each statistical 

unit is considered as a point in a space that has as many dimensions as there are active variables (see 

section 6.1), we will adopt also for clustering the same notion of distance already introduced for the 

factorial analyses: an Euclidean distance (after standardisation) for quantitative variables (treated 

with PCA); a chi-square distance in the case of COUNT variables or qualitative descriptions (dealt 

with by ACORR). The distance is a complex indicator that takes into account contributions 

coming from all the variables. We conventionally assume the distance as an indicator of 

dissimilarity, considering two units more similar than two others when their representative points 

are closer to one another in R
p
 than the representative points of the other pair. This seems a good 

assumption, on which there can be consensus. 

Even if we agree on the definition of similarity, some other operational problems arise: 

 how can we measure the optimality of a partition, and how can we compare partitions with the 

same number of classes and decide which is the best? 

 how many classes should we construct? How can we be sure that this number fits the structure 

of the set to be clustered? 

 which clustering algorithm should we adopt? 

We can identify two large groups of clustering methods, known respectively as hierarchical and 

non-hierarchical. Both methods work iteratively: they repeat a given sequence of operations that 

depend on the selected algorithm, until a final satisfactory configuration is reached. Both have 

advantages and drawbacks. 
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7.1.1 –Hierarchical methods 

The Ascending (aggregative) Hierarchical Methods perform iteratively the following operations on 

a set of n elementary units, or on groups previously formed: 

 compute the similarity for each pair of items (units or groups); 

 merge the two most similar items, thus reducing to n-1 the number of the groups. 

At starting there are as many groups as there are elementary units, each consisting of exactly one 

unit. At the end of the process, after n-1 aggregation steps, all the units are grouped in one global 

cluster. An acceptable solution lies somewhere between these two extremes, as we would like to 

have the elementary units regrouped in a number of clusters small enough to guarantee synthesis, 

but large enough to save a consistent fraction of the information. 

The aggregation process is graphically represented by means of an aggregation tree. 

The units to be aggregated are shown on the left, at the base of the tree (figure 7.1). From left to 

right the units are progressively aggregated, at a distance proportional to their dissimilarity (i.e., the 

more similar they are, the more to the left the aggregation point lies). A partition can be obtained by 

cutting the tree vertically at some intermediate level. Moving to the right the number of the resultant 

classes becomes smaller and smaller, but also smaller becomes their internal homogeneity. 

A compromise criterion is needed to decide how to cut the tree conveniently. 

level of similarity at which 
 

the aggregation occurs  
Unit   

               

1    | A   | B      

    |    |       

2    |    |       

    |    |       

3    |    |       

    |    |       

4    |    |       

    |    |       

5    |    |       

    |    |       

6    |    |       

    |    |       

7    |    |       

    |    |       

8    |    |       

    |  A   | B      

Figure 7.1 - A hierarchical aggregation tree. Eight units are clustered, and the number of the 

resulting groups decreases moving to the right of the tree, corresponding to an 

increasing dissimilarity. The section AA produces a partition with 5 classes; the 

section BB produces 4 clusters. 

A hierarchical procedure is handy when the number of units does not exceed some tens. If they are 

more numerous (let us say, over a hundred) the aggregation tree becomes burdensome to compute 
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and difficult to read. Beyond this, if n is the number of groups currently existing, n(n-1)/2 similarity 

values must be computed at each step: the time needed grows quadratically with n. 

Another severe drawback of these methods is the irreversibility of the choice made at each step: 

when two units are joined, this is forever. Anyway, the algorithm selects the pair to be joined only 

on the basis of local considerations, with no global concern: it is like a chess player that steadily 

chooses the move which gives the best immediate advantage, with no consideration for what can 

occur in the next moves, i.e., with no concern for strategy. 

In the case of hierarchical methods, the overall aggregation path might sometimes evolve in a more 

satisfactory way if an aggregation other than the locally optimal one were selected at the current 

step. As a consequence of this, a partition obtained by cutting the tree at any intermediate level is 

usually far from optimal. 

7.1.2 – Non-hierarchical methods 

Suppose that an initial partition, with the user-requested number of classes, has been determined 

somehow. Its quality is then improved iteratively, by moving some elements from one class to 

another if this increases the value of the objective function, which is a suitable measure of the 

partition optimality.  

The process continues until a final configuration is reached that cannot be further improved through 

a local re-assignment of units. The partition obtained is a local optimum: this means that small 

changes in the allocation of the units to the groups are unable to improve it. However, some better 

partitions with the same number of classes might exist, unreachable from the current one via small 

changes. 

The partition eventually obtained depends on the configuration assumed at start and on the number 

of the requested groups. 

Some definitions 

When we introduced the representation of a set of statistical units as points in a multidimensional 

space we assumed the Inertia (defined in section 6.1), to which all units contribute, as a measure of 

the overall variability of the data table (or, of its information contents). We will here act 

consistently with that concept. 

Let  Intot = i mi * di
2
  be the total Inertia of the cloud with respect to its overall centre, and let us 

consider a generic partition of the cloud in k clusters („partition‟ means that each unit belongs to 

one and only one group, with no superposition between groups). Let Gj represent the centre of the 

j-th cluster: its co-ordinates are the average values of the p variables, computed keeping into 

account only the units belonging to the j-th class. 

The generic class j of the partition has an Internal (or intra-class) Inertia defined as 

Inint( j ) = iIj mi * d2(i,Gj) 

where the sum extends only to the units belonging to the j-th class and the distances are computed 

from the Gj, the centre of the class. 

The internal inertia of a class is a measure of the dispersion of its elements about the class centre. 

A good partition should consist of groups as homogeneous as possible, i.e. with a low internal 

inertia. 
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The Internal Inertia of the partition (also called Inertia within Classes) is the sum of the internal 

inertia of all its classes. This value should be as low as possible, which means that all the classes 

should be as homogeneous as possible. The average characteristics of the units included in a class 

are represented by the co-ordinates of the class‟ centre Gj. 

The purpose of clustering is to offer a simplified view of a phenomenon, in which all units 

belonging to the same class are identified with the class‟ centre, neglecting as irrelevant the 

differences existing amongst them. The initial cloud is thus reduced to a new cloud formed by the k 

centres of class, spread about the cloud's global centre. Its inertia is the External Inertia of the 

partition (or Inertia between Classes): 

In
ext

 = j M(j) * d
2
(Gj,G) 

where M(j)  is the mass of the j-th class (equal to the sum of the masses of the units belonging to it) 

and d2(Gj,G)  is the square of the distance between Gj and the overall centre G. 

Let us suppose that, in a way or another, the cloud has already been split into k clusters, whose 

centres are G1, G2...Gk. The well-known Huyghens‟ theorem proves that the Total Inertia can be 

decomposed as follows: 

In
tot

  =  In
ext

 + In
int

 

where In
tot  represents the cloud‟s Total Inertia, In

int and In
ext

  are the Internal and External Inertia 

defined above.  

The objective function assumed for non-hierarchical clustering in ADDATI is  

max (In
ext

 / In
tot

)    equivalent to     min (In
int

 / In
tot

) 

corresponding to a set of clusters which are globally as compact as possible. The value of the 

objective function varies between 0 and 1 (the highest the best, if the number of the clusters is the 

same).  

In a hierarchical aggregation there are at start as many clusters as there are units. For this situation, 

Inext = Intot  and  Inint = 0. 

When the units are progressively aggregated the Internal Inertia is increased, while the External 

Inertia is decreased exactly by the same amount. When at the end of the process all the units are 

regrouped in one class, Inint = Intot  and  Inext = 0. At each step, those two units are joined for 

which the unavoidable increase of the Internal Inertia is minimal.  

Diday’s dynamical clouds method 

The clustering strategy used in ADDATI is quite complex, and will be illustrated in some steps. An 

important component is the non-hierarchical clustering method proposed by Erwin Diday in 1971. 

Diday's method requests the user to enter the number of the groups that should be constructed 

(tentatively, the number of groups he would like eventually to obtain ) and to provide in one way or 

another an equivalent number of points {S1, S2,...Sk} in the feature space, to be assumed as initial 

centres (or seeds) for the aggregation procedure. 

The method repeats iteratively the two steps shown in the figure 7.2. The distance from all k seeds 

is computed for each unit, and the unit is assigned to the class associated with the closest seed. This 

generates a provisional partition with k classes: each unit belongs to one and only one class. 



ADDATI, User Guide – chp. 7: non-hierarchical Clustering                                                                                                          7-5 

 

Enter the number k of the classes and a set { S } of  

k points to  be assumed as initial centres (seeds) 

 

   

Construct the groups by assigning each unit to the  
 

Nearest centre  

   

Compute the centres of the groups 
 

   

Are the co-ordinates of the centres of the classes  no 

exactly the same as in the previous iteration?  

yes       
a local optimal partition 

has been found! 

Stop  

Figure 7.2  Scheme of Diday‟s non-hierarchical clustering algorithm. 

The centres of these classes are then computed. They replace the initial centres. The assignment 

procedure is then repeated; the centres are recomputed, and so on. At each iteration some units 

change class, until a stable configuration is reached.  

It can be proved that with each iteration the Internal Inertia of the partition cannot increase (it 

actually decreases, otherwise a minimum is reached and the procedure stops). This means that the 

groups become more and more compact. 

The final partition corresponds to a minimum of the Internal Inertia Inint or, because of Huyghens' 

theorem, to a maximum of the External Inertia Inext. It is only a local optimum: this means that the 

partition cannot be improved by changing the assignment of a few units, but might be improved by 

a more radical re-attribution. We are never sure that we have found the global optimum, i.e. the 

best of all the possible partitions with that number of classes: owing to the size of the problem, such 

certainty would generally require an enormous computing time.  

Once the number of the groups has been chosen, the final partition depends only on the set of the 

initial seeds {S1,...,Sk}, as the algorithm is totally deterministic. 

7.2 – The clustering sequence in ADDATI 

7.2.1 – The non-hierarchical clustering method 

The input to the clustering routine is a table of factorial co-ordinates saved by ACORR or ACOMP 

after processing a table of quantitative or qualitative observed variables, or a set of contingency 

tables. 

Diday‟s algorithm, that iteratively re-assigns the units to the groups in order to achieve an optimal 

partition, requires from the user an initial decision about the number of the groups. When the 
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number indicated by the user mirrors poorly the structure of the set to be segmented, the quality of 

the resulting partition is generally unsatisfactory. 

The partition obtained, that represents a local optimum, not the global one, depends on the choice of 

the seeds (the initial centres) around which the units are aggregated according to a criterion of 

minimum distance. Various strategies can be conceived for choosing the seeds; in general, changing 

the seeds leads to different results. 

In order to cope at least partly with such problems, ADDATI implements a classification strategy 

that uses in an integrated way both hierarchical and non-hierarchical procedures. The currently 

implemented analytical path is the evolution of a different strategy used in past, indicated here as 

Method 1. Here we will limit ourselves to describe with some detail the two methods (the one used 

in the preceding versions of the package and the one used currently) and their relationships. 

We think that the hierarchical ascending method, internally used in the overall non-hierarchical 

procedure, is simple and does not need a detailed explanation. In the past versions of the package it 

was implemented as an option in the analysis menu (AHC: Ascending Hierarchical Clustering), but 

we decided to eliminate it, as the interpretation gets very difficult already with a hundred statistical 

units. 

7.2.2 – Non-hierarchical Clustering: the algorithm implemented in ADDATI 

In order to produce a satisfactory partition, two steps were neatly distinguished in the former 

releases: an exploratory phase, that yielded information about the most suitable number of groups 

and suggests a good choice of the initial seeds, followed by an optimisation phase, that generated 

the final optimal partition 

The sequence was improved with version 4.0, under the name of Method 2. For a while methods 1 

and 2 have both been available, and the user could decide which to use. The comparison of their 

performances in many analytical exercises has led us to decide to eliminate the method 1 starting 

from version 5.2. 

We will only limit ourselves to a description of the method 2, still distinguishing for convenience an 

exploratory from an optimization phase, even though the two phases are now implemented as a 

continuous process, without any need of a user‟s intervention. 

The exploratory stage 

Instead of one, several partitions (say, some tens) are constructed with exploratory purposes. In line 

of principle the requested number of classes (for all partitions) is the same that one would like to 

obtain in the final optimal partition. The initial centres are usually randomly chosen (though some 

alternatives are possible). 

The two or three partitions with the highest values of the objective-function (minimal internal 

inertia of the groups, i.e. maximal homogeneity within the groups), which are the best from the 

statistical point of view, are cross-tabulated. The number of groups in the product-partition is a-

priori unknown. By construction, the units in the same group (i.e., belonging to the same cell of the 

rectangular table resulting from the cross-tabulation) have been clustered together in all the cross-

tabulated basic partitions. Therefore, we can have a reasonable confidence on their similarity. For 

this reason, the groups of the product-partition are called stable classes or strong forms. Even 

though they are often too numerous for the purpose of the research, they offer a detailed and often 

exhaustive description of the most important behaviours emerging in the context of that analysis. 
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 factorial co-ordinates      

      

 
NON-HIERARCHICAL CLASSIFICATION 

    

 m exploratory partitions P1, ..., Pm     

 each with n classes    
 

 

 

EXPLORATORY 

     PHASE 

 CARTESIAN PRODUCT  = P1 * P2 * ... * Pk    The number n of classes of the exploratory  

 of the  k best partitions    partitions is tentatively defined by the user 

 Let  q  be the number of the classes of             

(stable classes) 

    

      

 Set  j  =  q     

      

      

 The partition with j classes is optimised     

      

 The two most similar classes are merged     

      

 
 

j  =  2 ? yes 
    

       

 No     

      

 
 

j  =  j - 1 
     

        

      

       

 INSPECTION OF THE CURVE  that shows the 

value of the objective-function for the sequence of  

optimal partitions with  q, q-1, ... 2 classes. The most 

convenient partitions are selected 

    

 

 
 

 

 

 

OPTIMISATION 

      PHASE 

 Detailed descriptions of the selected partitions and 

comparison of their characteristics 

    

      

      

 FINAL PARTITION P     

 ( n_opt classi )     

Figure 7.3 - Scheme of the clustering strategy currently implemented in ADDATI. 
 

The Optimisation stage 

The product-partition thus obtained, that almost always consists of a too high number of classes 

when confronted with the purpose of the research, is assumed as the starting configuration for an 



ADDATI, User Guide – chp. 7: non-hierarchical Clustering                                                                                                          7-8 

 

optimisation sequence. It has been constructed in such a way that its groups should represent in 

some detail the different behaviours emerging in the set to be clustered. 

Let q be the number of the stable classes (the classes of the product-partition). At this point, two 

routines are called: the first optimises this partition with q classes and saves to a temporary file an 

essential description, sufficient to reconstruct it easily; the second decreases by one the number of 

the groups by merging the two most similar ones. We have now a non-optimal partition with q-1 

classes.  

The optimising/merging procedure is repeated, and a non-optimal partition with q-2 classes is 

obtained. This procedure continues iteratively until all groups have been merged. 

At this point a dialog like that in the figure 7.4 below is displayed. 

 

Figure 7.4 – The dialog for the selection of the partitions to be described 

When the button is pushed a graph like that in Figure 7.5 is displayed. It plots the value of the 

objective function vs. the number of classes for the sequence of partitions with a progressively 

decreasing number of classes (remember that in this case all partitions are optimal). It is possible 

to focus on the most promising ones, i.e. those for which the decrease of the o.f. starts becoming 

significantly large when the number of the groups is further decreased by one. On user‟s request, 

the selected partitions are completely described; their comparison leads to the final selection. 
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Figure 7.5 - The graph of the values of the o.f. when the number of the clusters is progressively 

decreased by iteratively merging and optimising. 

 

It is worth remarking that the number of the classes of the exploratory partitions initially suggested 

by the analyst is used only to construct the cross-tabulated partition, that is the starting 

configuration for the next step, in which a sequence of partitions with a progressively decreasing 

number of groups are optimised.  

The number of the classes in the finally selected partition - chosen after inspecting the graph that 

displays the values of the objective function and after comparing the features of the candidate 

partitions if they are more than one - should really represent an intrinsic property of the set to be 

clustered.  

Of course, we can never be sure to have achieved the globally optimal partition with a given 

number of classes (the so called optimum optimorum) and probably we have not. Both methods 

are heuristic, and yield a partition of good quality, not the absolutely best one. But this is well 

known for combinatorial reasons, and we have to accept it.  
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7.3 – The NONGER dialogs 

Use  It computes an optimal partition of the set of units to be clustered, using a non-hierarchical 

method. 

Limits In order to speed up the computation the data table is stored in central memory. To this 

purpose all the available core memory can be used, but remember that if the set of units to 

be clustered is very numerous, Windows will have recourse to virtual memory on disk, and 

things can become painfully slow. 

 A maximum of three exploratory partitions can be cross-tabulated. The reason of this 

limitation is to prevent the user from creating a product-partition with a too high number of 

stable classes. To optimise iteratively a partition with 200 classes is something really slow! 

Try it to convince yourself... For what is possible, try also not to exaggerate with the 

number of the classes you request.  

 

7.3.1 – Controlling the exploratory stage 

The control parameters are entered in the following dialog. 

 

Path of the .PCS file… 

If the clustering immediately follows a factorial analysis, the path of the file where the requested 

factorial co-ordinates have been saved is displayed automatically in the control on top of the dialog. 

If the classification operates on factorial co-ordinates saved during a previous work session, the 

analyst must browse to point to the appropriate file.  
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From the PCS file NONGER will also read 

 the name of the .TMP file that contains the values of the observed variables submitted to the 

factorial analysis (PCA or ACORR). They are necessary to compute the profiles of the classes 

after constructing them. 

 the .FPL file with the information necessary to draw the projections onto factorial planes, that 

NONGER will modify adding some points representing the centres of the classes. The little 

squares that mark the location of the statistical units on the plane are replaced by the number of 

the class to which each unit has been assigned. 

How many exploratory partitions? 

Indicatively, 10-20. A higher number of base (or exploratory) partitions is more likely to produce 

some good quality partitions to be cross-tabulated, but requires a proportionally longer computing 

time (anyway, this is no longer a problem with modern computers, unless your Dataset is very 

numerous). Memory occupation is not affected. 

Obviously, if the units to be clustered are relatively few it is unnecessary to compute many 

partitions; if, on the contrary, the units are several thousands, it is convenient to increase the number 

of the partitions, in the hope to find a good local optimum. Unfortunately, this will increase the 

computational time… 

How many exploratory partitions (the best ones) are to be cross-tabulated? 

Amongst the base partitions, computed for exploratory purposes, the best ones (i.e. those with the 

highest value of the objective-function, their number being decided by the analyst) will be cross-

tabulated in order to determine the most homogeneous groups emerging from the analysis (the so-

called stable classes or strong forms). 

The choice about how many partitions should be cross-tabulated depends on the level of detail 

desired for the stable classes. For instance, if some seven-class partitions are requested, cross- 

tabulating two of them could produce (at least theoretically) up to 49 stable classes (i.e., 49 

combinations of the two classes to which a unit has been assigned in the two partitions). 

In general, the more strongly-structured the set, the more consistent the two partitions will be, and 

the number of stable classes will decrease accordingly. They would be seven if the two cross-

tabulated partitions were identical. 

In order to avoid an excessive fragmentation of the product-partition, which would make the 

interpretation more difficult, ADDATI accepts to cross-tab no more than 3 base partitions.. 

How many classes in each partition? 

This number is tentative, and should represent the ideal number of groups that the user would like to 

obtain finally. 

The number of the classes of the final partition will be eventually decided after a careful inspection 

of the diagram that shows how the objective function decreases when the number of the classes is 

reduced. 
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Options for the choice of the starting clustering centres: 

1. repeatable random choice 

2. non repeatable random choice 

Some more ways of choosing the initial seeds, present in ADDATI 5.2, will probably be added in 

the future. Anyway, a random choice of the starting seeds is a good solution (the programme itself 

takes care of that). The two current alternatives have the following meaning. 

Repeatable random choice 

If n units are to be clustered, for each partition as many values between 1 and n are generated as 

there are classes, and the units with those ordinal numbers are assumed as the initial aggregation 

centres. The random generation starts from a fixed seed (a value that determines the sequence of 

the numbers drawn randomly). If the analysis is repeated, the same clustering centres are 

determined and the same sequence of partitions is produced. 

 

Non repeatable random choice 

In this case the "seed" that determines the sequence of random numbers varies, as it is derived 

from the computer's internal clock. Repeating the analysis will therefore generate different 

aggregation centres and will in general produce different results. 

7.4 - NONGER – Optimisation stage and description of the partitions 

Let us suppose that the product-partition generated in the exploratory stage consists of q stable 

classes: NONGER starts optimising this-partition by suitably re-allocating some units (Diday 

method). Then the two closest (most similar) groups are merged, and the resulting partition is also 

optimised. An optimal partition with q-1 classes is thus produced. The same operation is iterated on 

this latter partition, yielding another partition with q-2 classes, and so on until eventually an optimal 

partition with only two classes is obtained. 

At this point ADDAWIN calls an internal utility to display the graph that plots, for this sequence of 

optimal partitions, the value of the objective function vs. the number of the classes. The value of the 

o.f. obviously decreases when the number of the classes decreases. The figure 7.5 refers to the 

Kenya example, in which 10 stable classes were determined. 

By inspecting this graph the user can focus on just one or on several promising partitions, with an 

acceptable number of classes and a sufficiently high value of the objective function. Two possible 

partitions - with seven and four classes respectively - are pointed out in figure 7-4. 

When choosing the final partition the user should consider the trade-off between the level of 

synthesis that can be achieved (few classes are always more convenient) and the value of the 

objective function, that represents the rate of information maintained. The number of the clusters 

should be reduced as much as possible, but the value of the o.f. should not decrease too much. It is 

advisable to merge further if the o.f. level of the resulting partition (the next on the right along the 

graph) is still satisfactorily high. Otherwise, the price to be paid in terms of information loss may 

result unaffordable.  
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It is therefore convenient to select a partition such that the value of the objective function decreases 

significantly by further merging (i.e., the slope of the curve changes quite abruptly moving one 

step to the right). 

The decision should take into account the three following aspects. 

  The number of clusters that better fit the analyst‟s objectives should orient him/her towards the 

part of the curve to be more carefully considered. 

  The decreasing of the value of the o.f. with each merging step should lead to focus on few 

candidate partitions, to be described in detail. 

  The final decision should be taken after examining carefully the features of the candidate 

partitions – specially their class profiles – choosing the one that better mirrors the objectives of 

the analysis. 

After choosing one or more candidate partition(s) to be further investigated, the user closes the 

graph by selecting the option File→Exit  from the Menu. 

The dialog shown below is displayed, and the user is prompted to enter the number of classes of the 

optimal partition to be described. This request is repeated again and again, until all the partitions are 

described whose features are to be compared to reach the final decision. 

                   

Here we have requested to describe the partition with 7 classes. Immediately thereafter, the 

following dialog appears. 
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It is then possible to inspect the features of the requested partition (especially the profiles of the 

classes), to view the projections on the main factorial planes, to describe a partition with another 

number of classes, to review the graph, or to terminate. 

7.4.1 – Examining the profiles of the classes 

The profile of each class must be compared with the overall profile in order to assess which 

variables characterise it more, because of their values significantly higher or lower than the overall 

average. Some aids are written under the numeric values of the variables: their purpose is to ease 

the interpretation by focusing the user's attention on the most important variables in each cluster‟s 

profile. One of the following alphanumeric strings is written under each profile component: 

"----",   "--",   "~~~",   "++",   "++++" 

The string actually written is determined by the ratio between the concerned component and the 

corresponding component of the overall profile. The ratio is computed for each component of all 

class profiles, and compared with a set of thresholds values. The aid string is chosen according to 

the scheme shown in the two tables 7.1 and 7.2. The thresholds shown are the programme's default; 

suitable in most cases. 

When the variables are QUANTITATIVE, the '+' and '-' signs used to facilitate the 

inspection of the class profiles have the following meaning. Let  

 xm(j,i)     be the average value of variable j in class i 

 xg(j)        be the overall average value of the same variable j. 

The variable j is relevant for cluster i when the difference xm(j,i) - xg(j)  is 

far from 0. In order to evaluate its significance, the difference is compared with 

the variable’s standard deviation  (j). The value of the ratio  

 R  =  [xm(j,i) - xg(j)] / (j) 

is then compared with four suitably chosen thresholds s1,..., s4 whose current 

values are shown here below. The value of the aid string is then determined 

according to the following scheme: 

      ----             --              ~~~              ++           ++++       value 

----------|----------|----------|----------|-------------     of the 

              -1.00              -0.20               0.20              1.00                            ratio R 

Table 7.1 - The default thresholds proposed to help interpreting the profiles in the case of 

quantitative variables. 
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The  +  and  -  signs are used to facilitate the inspection of the class profiles. They are to be 

interpreted as follows.  

The reference is to the ratio between the frequency of each variable in the cluster and its overall 

frequency. With the current threshold values such ratio is represented as follows:  

         ----                    --                      ~~~                      ++                     ++++            value 

--------------|----------------|----------------|----------------|-----------------     of the 

                 -1.00                   -0.20                    0.20                    1.00                           ratio R 

Table 7.2 - The default thresholds proposed to help interpreting the profiles in the case of one or 

more contingency tables. 

Note: If the table submitted to the analysis consists of quantitative variables, the default 

thresholds are automatically computed by the programme and depend, for each 

variable, from its standard deviation. While the classes are determined from the 

factorial co-ordinates, the profiles are computed using the original variables and the 

initial unit of measures. This makes the interpretation easier. 

Profile’s components 

The profile‟s components have a different meaning in the two cases. 

 Quantitative variables (tables of measure): for each group, a profile component is the average 

value of a variable in the class; the corresponding component of the overall profile is the overall 

average of that variable. 

 Contingency tables: a profile component represents the frequency in the class of a category of 

a qualitative variable. The corresponding component of the overall profile is the overall 

frequency of that variable. 

As a general guideline, for quantitative variables the way of determining the aids to interpretation 

seems appropriate: their values should not be modified by the user.  

For contingency tables it may sometimes happen that the various units (and therefore also the 

clusters) are little different, and the default thresholds do not seem appropriate (e.g., it may occur 

that in almost no group the variables' frequencies differ from the corresponding values of the overall 

profile by more than 20 per cent). ADDAWIN should then allow the analyst to change the 

thresholds conveniently (not yet implemented). 

NONGER – The interpretation of the results 

 We shall illustrate the output with reference to the Kenya example used with the PCA (see section 6.2). 

Suppose to have clustered the districts on the basis of seven factorial co-ordinates (that explain 100 per cent of 

inertia), and enter the following values of the clustering parameters in the exploratory step: 

 exploratory partitions to compute:      10 

 no. of exploratory partitions (the best ones) to be cross-tabulated:   2 

 no. of classes in each exploratory partition:       7 

 repeatable random choice of the initial aggregation centres 

In our Kenya analysis the exploratory step produces 10 stable classes, and the graph of figure 7.5 is displayed. 

The user can request the description of any optimal partition determined, ranging from 10 to 2 classes.  
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The results are saved to a file named NGnn.TXT.  

After a summary of the parameters enter by the user to control the analysis, the output file reports 

the number of iterations that were necessary to achieve convergence for each partition computed, 

and the final value of the objective function. 

For each partition whose description has been requested, the following information is written: 

  a table like 7.3, which summarises the number of the groups in the partition, the number of units 

in each group and its weight. Remember that the weight was assumed proportional to the 

district's population. 

10 STABLE CLASSES IN THE CROSS-TABULATED PARTITION 

CLASS 1 2 3 4 5 6 7 8 9 10 TOT 

UNITS 10  7 6 6 3 2 2 2 2 1 148 

WEIGHT 

(%) 

31.7 19.5 12.8 11.8 2.9 1.3 6.1 7.6 1.9 4.5 100.0 

Table 7.3 - Kenya example: the stable classes obtained in the exploratory stage. 

   a detailed description of the classes (the table 7.4 shows an example) 

************** 

* CLASSE   6 * 

************** 

UNITS : 2     WEIGHT:  1.26 % 

UNITS ASSIGNED TO THE CLASS : 

Kajiado      Isiolo 

 

UNIT CLOSEST TO THE CLASS CENTRE (d2 =  0.4111) : Kajiado 

UNIT FARTHEST AWAY FROM THE CLASS CENTRE (d2 =  4.8285) : Isiolo 

CLASS RADIUS : 1.18697 

DISTANCE OF THE CLASS CENTRE FROM THE OVERALL CENTRE : 5.99533 

Table 7.4 - An example of the information printed for each class 

The units included in each class are listed, together with the values of the following indicators: 

    the class’ radius, which is an indicator of class compactness.  

Let Inint(j)  be the internal inertia of the j-th class, obtained by adding up the inertia of all the 

units belonging to the class, computed with respect to the class centre Gj. This value can be 

written as 

Inint(j)  =  i mi*d
2

(i,Gj)  =  Mj * dj

2

 

where Mj is the weight of the class and dj its average radius, i.e. the distance from Gj at which 

the class‟ mass should be distributed in order to have an Inertia equal to  Inint(j). It can be 

derived that 

dj  =  Inint (j) / Mi]½ 
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  the distance of the class centre from the overall centre of the cloud, as an indicator of the 

peculiarity of the class‟ features: the greater this distance, the more different the average 

features of the class from the overall mean characters represented by the overall centre. 

After describing the clusters, some more parameters are output:  

 the total Internal Inertia Inint; 

 the total external Inertia Inext ; 

 the overall Inertia, equal to the sum of the eigenvalues associated with the factorial co-

ordinates taken into account when clustering. For our Kenya example this value is 8.0, as we 

had eight normalised variables, and all the Principal Components had been passed on to the 

clustering procedure. 

 the value of the objective function, that measures the quality of the partition and is equal to the 

ratio between the external and the total Inertia. Its maximum is 1, achieved only when there are 

as many classes as there are units. 

The profiles of the classes follow (table 7.5 offers an example)  

The descriptions of all the requested partitions are written sequentially to file NGnnn.TXT. For 

each of them, the information on the class to which the statistical units have been assigned is stored 

in a text file (in .CSV format) named 'NGCLASnn.CSV', where „nn‟ stands for the number of the 

classes. In case there should be any need to load this file in ADDATI and modify something, the 

documentation file that describes it, named NGCLAnn.TXT, is saved along. The file .CSV is 

compatible with ARC/VIEW, and can be used to draw a classified map when geographical units 

(districts, Census tracts, regions and similar) are clustered. 

The profiles of the classes of each partition described are saved to a file named 

NGCLASnn_XLS.CSV, where as usually „nn‟ is the number of the classes. The values are comma-

separated, and the file can be directly loaded by EXCEL as a text file, to further process the profiles 

if necessary. 

CLASS  NUM     fert_    ave_ hp_land    act_ cereals  cattle  goa_sh   cash_ 

               rate     wage            rate                           crop 

  1     23     6.804  69.490   0.033   4.092   0.138   0.051   0.040   0.150 

                 ~~      ~~     ~~       --     ~~      ~~      ~~      -- 

  2      6     7.618  59.532   0.075   9.385   0.516   0.049   0.025   0.609 

                 ++      --      ++      ~~      ++      ~~      ~~      ~~ 

  3      4     6.321  81.480   0.056   3.832   0.210   0.389   0.237   0.000 

                 --      ++      ~~      --      ~~     ++++     ++      -- 

  4      3     5.705  71.839   0.041   3.517   0.000   0.117   0.412   0.000 

                 --      ~~      ~~      --      --      ~~     ++++     -- 

  5      2     7.470  40.957   0.066   9.362   0.451   0.143   0.078   2.152 

                 ++     ----     ~~      ~~      ++      ++      ~~    ++++ 

  6      2     5.861 126.930   0.003  38.011   0.000   0.001   0.000   0.193 

                 --    ++++      --     ++++     --      --      ~~      -- 

  7      1     6.920  67.470   0.019  11.090   0.100   0.013   0.017   2.460 

                 ~~      ~~      ~~      ++      --      ~~      ~~     ++++ 

OVERALL 

PROFILE 41     6.835  71.217   0.038   7.963   0.191   0.063   0.053   0.428 

Table 7.5 - Kenya example: the classes‟ profiles of the optimal partition with 7 classes. 
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The files written by NONGER 

NONGER saves the following files, which record in various forms the results of an analysis.  

  NGnnn.TXT, where „nnn‟ is a progressive number aimed at avoiding overwriting existing 

files. The file describes all the partitions requested. It lists the units assigned to each class, 

describes the profiles of the classes and offers some other information useful to the 

interpretation.  

  NGCLASnn.CSV records the class to which each statistical unit has been assigned. „nn‟ is 

the number of the classes of the partition to which the file refers: a different file is saved for 

each partition. 

These files have as many records as there are units, plus one record of headings. Thanks to 

their format, they can be directly loaded as text files by ARCVIEW. Each record contains 

the identifier of the geographical unit both as a string and as a number, followed by the 

number of the class to which the unit is assigned. The information can be added to the 

original data archive or – in case geographical units have been clustered – can be used to 

create a map of the classification. 

If ArcMap is used instead of ArcView to create the map, the file should be an .XLS 

(EXCEL) binary file, not a .CSV one. To convert it, load the .CSV file in EXCEL by 

double-clicking on it, and save it immediately thereafter in .XLS format. 

It may occur that EXCEL does not load correctly the .CSV file saved by NONGER, which 

uses commas as field delimiters. Should this happen, load NGCLASnn.CSV in ADDAWIN 

(use its documentation file NGCLASnn.TXT, automatically written by NONGER), then 

save it choosing as separators semicolons. EXCEL, depending on its settings, interprets as 

separators COMMAS or SEMICOLONS, and should then load it correctly. 

  NGCLASnn_XLS.CSV stores just the profiles of the classes in format .CSV, which should 

be accepted by EXCEL as a text file for further elaborations. A file of this type is written for 

each partition described. 

  NGnn.FPL is a file written by NONGER for FACPLAN. This file is written only if the 

factorial analysis that precedes the clustering (PCA or ACORR) has saved the file necessary 

to visualise the projections. If NONGER finds this file, it reads its contents, adds some 

information and saves it as NGnn.FPL, where „nn‟ is as usual the number of the clusters. 

When FACPLAN displays its contents, the location of each unit is no longer represented by 

a small square but by the number of the class to which the unit was assigned. 

Also the centres of the clusters are shown. This is another way of visualising how the 

classes (visible as sub-clouds of numbers „1‟, „2‟, etc.) are located with respect to the 

variables. 
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